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ABSTRACT: We demonstrate a hybrid light-emitting device (LED)
employing a chemical-vapor-deposition grown, centimeter-scale mono-
layer of WS2 (mWS2) as the active luminescent material embedded
within conductive organic layers. The active area of the hybrid LED is
composed of mWS2, located within the organic host matrix, sandwiched
between the hole- and electron-transporting organic layers. The mWS2
shows fast exciton decay and efficient light outcoupling compared to
the organic dyes used for OLEDs, whereas organic layers enable a
precisely controlled, large-area fabrication process. As a result, LEDs
with an average external quantum efficiency of 0.3 ± 0.3% and with the highest efficiency of 1% were achieved. Also, we show that
negatively charged excitons, also known as trions, are generated in the mWS2 with the injected current, causing an efficiency roll-off
at high current densities. Our result introduces a means for incorporating a range of emissive inorganic thin films into an organic
device structure, thereby taking advantage of the positive attributes of both material systems.

KEYWORDS: 2D material, organic, LED, transition metal dichalcogenide, large area

I. INTRODUCTION

Two-dimensional (2D) layered materials show unusual
physical properties that range from those of a wide-bandgap
insulator to a semiconductor, a semimetal, or metal.1

Monolayer transition metal dichalcogenides (TMDCs), a
subclass of 2D layered materials, have promising optical
characteristics such as efficient photoluminescence (PL),2,3 fast
exciton decay,4 and high chemical and air stability.5 As a result,
TMDCs have been used in various optoelectronic devices,
showing distinct characteristics from conventional bulk
semiconductors.6−14 For example, light-emitting devices
(LEDs) based on hexagonal boron nitride (h-BN) insulators
combined with TMDCs as the active luminescent materials
have been demonstrated.10−13,15 However, the LEDs require a
sequence of complex layer transfers during the fabrication and
are constrained by the limited size of the 2D semiconductor
flakes (several μm).11,13 Recently, a large-area TMDC-based
LED has been demonstrated, although its external quantum
efficiency was low (∼10−4%) compared to LEDs based on
exfoliated TMDCs.16,17

Here, we demonstrate centimeter-scale LEDs using a
monolayer of red-emitting WS2 (mWS2) embedded within
organic transport and host layers with an efficiency comparable
to much smaller, exfoliated-TMDC-based LEDs. The organic
layers enable simplified deposition and precise placement of
the TMDC within the structure to optimize the device
characteristics. We transfer a 1 cm2, chemical-vapor-deposition
(CVD) grown mWS2 onto a predeposited organic stack of the
4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host/4,4′-cyclo-

hexylidenebis-N,N-bis(4-methylphenyl)benzenamine (TAPC)
hole transport layer/MoOx hole injection layer/indium tin
oxide (ITO) anode. This is followed by deposition of the
remainder of the host layer, thereby burying the mWS2. The
device is completed with a 4,6-bis(3,5-di(pyridin-3-yl)phenyl)-
2-methylpyrimidine (B3PYMPM) electron transport layer and
an Al cathode. Embedding a monolayer TMDC within the
host enables efficient radiative emission via Förster transfer of
excitons from the organic layers, while separating the TMDC
from the heterointerface to avoid quenching at the heterointer-
face, especially at high current densities.18,19 The LEDs show
an average external quantum efficiency of 0.3 ± 0.3%, with the
highest value of 1%.

II. RESULTS
Figure 1a shows the structure of the hybrid LED with the
frontier energy levels in Figure 1b. Organic hole injection/
transport layers (HIL and HTL) comprising 2 nm thick MoO3
and 50 nm thick TAPC are deposited on top of the transparent
anode (150 nm thick ITO), and then an organic host layer
comprising 12 nm thick neat CBP is deposited. An mWS2 is
transferred onto the organic host by the method described in
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the Supporting Information, Figure S1. After transfer, we
deposit a 3 nm thick capping host (CBP) layer, 55 nm electron
transport layer (ETL), and the top Al contact.
The percentage of transition dipole moments (TDMs), θhor,

of the mWS2 in the CBP host aligned parallel to the substrate
plane is measured via Fourier plane imaging microscopy
(FIM).20−24 When θhor = 100%, all TDMs are oriented parallel
to the substrate, θhor = 67% for random, and θhor = 0% for a
perfect vertical alignment. Figure 2a shows the polar emission
pattern obtained from the mWS2 embedded within the CBP
host matrix measured by FIM. The intensity profiles (data
points) in the p-polarized plane (pPP) and s-polarized plane
(sPP) are fit to theory (solid line) in Figure 2b, as described in
ref 15. The data show θhor = 96 ± 2%, corresponding to near-
perfect horizontal orientation of the mWS2 TDM. This leads to
an exceptionally high light outcoupling efficiency of the LED,
as shown in Figure S2.25,26

The optimal position of the mWS2 within the emission layer
is determined by measuring the exciton density profile. To do
this, we deposit an ultrathin (0.5 Å) layer of the phosphor Pt-
octaethylporphyrin (PtOEP) at 2.5 nm intervals in a series of
devices, starting from the HTL/emissive layer (EML)
interface, to the EML/electron transport layer (ETL) interface
(see Figure 3a). The frontier energy levels of PtOEP align with
those of mWS2. Hence, the emission intensity from the PtOEP
at a fixed current density (J) is proportional to the exciton
density at its location. The measured exciton density profiles
for various J are shown in Figure 3b, with the peak near the

EML/ETL interface. The peak position changes from x = 15 to
12.5 nm at J = 100 mA/cm2 due to increased exciton
quenching near the heterointerface at high J. Figure 3c shows
the external quantum efficiency (EQE) of each sensing layer
sample, showing a decreasing efficiency as the sensing layer
moves farther from the interface due to the reduced exciton
density. The measured spectra of the samples are shown in
Figure 3d. We conclude from these data that the mWS2 should
be positioned ∼3 nm away from the EML/ETL interface to
enable harvesting of the highest density of excitons while
limiting exciton quenching.
With the structural design in Figure 3, a hybrid LED was

fabricated following the procedure in Figure S1, with the
performance given in Figure 4. Figure 4a shows EQE vs J, with
an average peak EQE = 0.3 ± 0.3%, and the highest efficiency
device with EQE = 1%. The inset shows the image of an array
of 0.2 mm2 devices. Figure 4b shows the J−V characteristics
with a microscopic image of the device electroluminescence in
the inset. The electroluminescence spectra at various J are
shown in Figure 4c, exhibiting a pronounced hypsochromic
shift with current in the device. Note that the EQE in Figure 4a
increases with current at J < 0.01 mA/cm2. As shown in Figure
4b, the device shows a noticeable leakage current at V < 2.5 V,
causing a significant quantity of charges to be lost rather than
generate excitons. Thus, as the injected current surpasses the
leakage current, EQE also increases.
Figure 5a and b show the photoluminescence of the mWS2

embedded within electron- and hole-only devices (EOD and
HOD, respectively) at several current densities. The device
structure and J−V characteristics of the EOD and HOD are
included in Figure S3. There is a pronounced hypsochromic
mWS2 photoluminescence peak shift with current in the EOD,
which is absent in the HOD. We conclude that injected
electrons in the EOD combine with the generated excitons to
form negatively charged excitons, or trions.27,28 The binding

Figure 1. Hybrid 2D-organic LED. (a) Schematic illustration of the
hybrid LED comprising a monolayer WS2 active layer sandwiched
between organic conducting and excition-generating layers. (b)
Frontier orbital energy diagram of the materials used in the LED.

Figure 2. TDM orientation of monolayer WS2 in a CBP host matrix.
(a) Measured Fourier plane imaging microscopy polar plots for the
monolayer WS2 in the CBP host matrix. (b) Intensity profiles of the
polar plot in the pPP and sPP planes (data points) along with the
simulated fits (solid lines).
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energy of trions has previously been shown to be 20−30 meV
relative to the neutral exciton,27,29 a value that corresponds to
the energy shift in Figure 5a. The absence of a peak shift of the
mWS2 photoluminescence in the HOD is due to the
asymmetric charge trapping in the CBP−mWS2−CBP
quantum well structure. The energy barrier for electrons at
the CBP LUMO-mWS2 conduction band discontinuity (see
Figure 1b) is larger than the barrier at the CBP HOMO-mWS2
valence band discontinuity for holes.30 As a result, hole trions
do not form as efficiently as electron trions, thus showing no
apparent peak shift in Figure 5b.

III. DISCUSSION

The introduction of an inorganic active layer into an OLED
structure using dry transfer enables a variety of material
selections to be combined with organic thin films in a hybrid
LED. Using an organic host matrix separates charge
conduction from the guest emission processes, allowing for
optimization of each material to serve its intended purpose.
Excitons are efficiently formed in the conductive host layer and
then transferred to the luminescent active material (mWS2),
which is positioned near the maximum exciton density within
the Förster radius, as determined from the sensing layer
experiments in Section II.
The use of a host matrix differentiates the device structure

from the previously reported TMDC LEDs,15,16 where the
TMDCs are located directly between the hole- and electron-
transport layers. However, according to Giebink et al.18 and
Wang et al.,19 the heterointerface is prone to charge/exciton
accumulation and the coexistence of a high density of excitons
and charges result in degradation of the active material or even
morphological instabilities.31 The use of a host matrix enables
placing the TMDC apart from the heterointerface with benefits
to device stability.

CVD-grown mWS2 has a high defect density comprising S
vacancies formed during the growth process, limiting the
device efficiency. Also, cracks and holes are generated during
the dry transfer since mWS2 is a polycrystal bound by weak van
der Waals forces.32 The S vacancies lead to emission from the
defect levels in both the EOD and HOD, even when no
charges are injected, as shown in Figure 5c.33,34 The physical
defects lead to the EQE varying by orders of magnitude even
within the same growth run. The defects are nonradiative,
appearing as the dark spots on the device emitting surface, as
shown by the image in Figure 4b, inset.
The electroluminescence spectra show emission from mWS2

but not from the organic host in Figure 4c, demonstrating
efficient Förster transfer of the excitons generated at the EML/
ETL interface, into mWS2. The spectrum shows a bath-
ochromic shift depending on the drive current. In Figure 5c,
the photoluminescence of mWS2 in the EOD, excited with a
532 nm laser, is shown as a function of current density, with
the deconvolution of the spectrum using two Lorentzians with
exciton and trion emission peaks at wavelengths of λ = 617 and
628 nm, respectively.33 The trion peak intensity increases with
the current density, as expected. The laser selectively excites A
excitons of mWS2 (∼2.0 eV), but not the higher energy (∼2.4
eV) B excitons, allowing us to not consider their spectra in the
peak fits.35 The ratio between the emission intensity of
excitons and the increased emission intensity of trions due to
the charge injection is found using the law of mass
action:28,36,37
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where NX, NX
−, and nel are the concentrations of excitons,

trions, and electrons, with respective masses of μX, μX−, and
me,

38 kB is the Boltzmann coefficient, T is the temperature, and

Figure 3. Exciton density profiles in the EML. (a) Illustration showing the placement of the PtOEP MSLs within the emissive layer. (b) Measured
exciton density profile at different current densities. (c) J−EQE characteristics of the samples with the sensing layer at each different position. (d)
Electroluminescence spectrum of samples with the sensing layer at different positions at J = 1 mA/cm2.
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EB is the trion biding energy (20 meV).27 The reduced masses
of electron trions and exciton are μX−−1 = 2me

−1 + mh
−1 and

μX
−1 = me

−1 + mh
−1. Equation 1 describes the ratio between the

concentrations of excitons (NX) and trions (NX−) in the
presence of an electron concentration. It is apparent that the
change of NX/NX‑ is dependent on nel within the mWS2 film.
The change of NX/NX

− is determined from the relative
emission intensities of trions and excitons vs J, which
correspond to γtrNX

− and γexNX where γtr and γex are the
intensity of each particle, which is described as36
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where γtr and γex were obtained from fitting parameters in rate
equations by Peimyoo et al.38 Equation 2 yields the relation
between the injected current density (nel) and the amount of
increased spectral weight of trions vs electron density as shown
in Figure 5d. The theoretical fit and the measured data are in
close correspondence, showing that the bathochromic shift of
the electroluminescence occurs due to electron trion emission.
In addition to the spectral shift, the radiative decay rate of

trions is 5 times less than that of the excitons,38 resulting in a
reduction in mWS2 photoluminescence intensity as a function

of injected electron density in Figure 5a. Therefore, the high
electron density causes a decreased internal quantum efficiency
of mWS2 and a corresponding roll-off in EQE at J > 0.01 mA/
cm2 (Figure 4a). As a result, placing mWS2 in the region with
reduced electron density while maintaining high exciton
density enables efficient EQE with reduced roll-off.

IV. CONCLUSIONS

We demonstrated a light-emitting device with an active layer
comprising a CVD-grown, large-area mWS2 as the luminescent
material, combined with organic buffer layers (charge-transport
and host matrix layers) that enable efficient charge transport
and exciton generation. The use of an mWS2 enables
principally horizontally aligned transition dipole moments
and fast exciton decay, leading to an enhanced outcoupling and
device stability. Moreover, the organic host was used to
efficiently generate and inject excitons into the mWS2 via
Förster transfer. Thus, the mWS2 was positioned several
nanometers distant from the heterointerface, which prevents
sites for nonradiative recombination. LEDs with diameters of
250 μm exhibited average EQE = 0.3 ± 0.3% with a peak of
1%. In addition, electron- and hole-only devices indicated that
the injected electrons in mWS2 combine with excitons,
generating trions, reducing EQE at high current densities.
Our results show an efficient way of incorporating promising
luminescent materials into the organic device structure.

V. METHODS

Device Fabrication. OLEDs were grown on glass
substrates with a predeposited and patterned 150 nm thick
ITO anode (Thin Film Devices, Inc.). The ITO-coated
substrates were treated in a UV-ozone chamber for 15 min
prior to organic film deposition. The organic film layers
comprising CBP 12 nm/TAPC 50 nm/MoO3 2 nm were
grown by vacuum thermal evaporation (VTE) in a chamber
with a base pressure of 1 × 10−7 Torr. The mWS2 was dry-
transferred onto the CBP surface following the procedure
described in Figure S1. After transfer, the sample was left in the
VTE chamber for 2 h. The device was completed by depositing
100 nm Al/1.5 nm LiQ/55 nm B3PYMPM/3 nm CBP on top
of the mWS2.

Dry Transfer Process. The CVD-grown monolayer WS2
on a SiO2 substrate was purchased from 6Carbon Technology.
An mWS2 deposited on a SiO2/Si substrate (CVD grown) is
immersed in a 100 mL solution comprising bis-
(trifluoromethane)sulfonimide (TFSI)/dichloroethane
(DCE) (0.2 mg/mL). It is heated for 50 min at 100 °C,39

as shown in step A, Figure S1. After the TFSI treatment, the
sample surface is dried in N2. A polydimethylsiloxane (PDMS)
handle is attached to the mWS2 as shown in steps B and C.
The PDMS attached to the Si substrate is immersed into a
KOH etchant solution (14 g of KOH in 200 mL of DI water)
at 60 °C. Once the substrate falls away, the mWS2 attached to
PDMS (step E) is once more dried in N2. The mWS2 on
PDMS is pressed gently onto the organic surface using an
automated transfer stage, and the PDMS is peeled off, leaving
the mWS2 on the organic surface (step F).

Device Characterization. The voltage−current density−
EQE characteristics of the LEDs were measured using a
parameter analyzer (HP4145, Hewlett-Packard) and a
calibrated photodiode (S3584-08, Hamamatsu Photonics)
following standard procedures.40 The emission spectra were

Figure 4. Performance characteristics of the hybrid LED. (a) J−EQE
characteristics of the hybrid LEDs. The average and the highest EQE
data are shown in black and red data points, respectively. Inset:
Photograph of the LEDs grown on a 2.5 × 2.5 cm2 glass substrate. (b)
J−V characteristics of the hybrid LED. Inset: Photograph of the
device electroluminescence. The diameter of the device is 250 μm. (c)
Current-dependent electroluminescence spectra of the hybrid LED.
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measured using a calibrated spectrometer (USB4000, Ocean
Optics, Inc.) connected to the device via an optical fiber
(P400-5-UV−vis, Ocean Optics, Inc.).
Transition Dipole Moment Measurement. The ori-

entation of the TDM of the mWS2 was measured using Fourier
plane imaging microscopy following previously reported
procedures.21

Electron- and Hole-Only Device Photoluminescence
Spectral Fitting. The photoluminescence spectrum of mWS2
in the EOD was fit using two Lorentzian curves following

λ γ
λ λ γ

=
− +

f
A

( )
( )

2

0
2 2

(3)

at center wavelengths of λ0 = 617 and 628 nm, where γ is the
half-width at half-maximum and A is the constant for the peak
height. A least-squares algorithm was used to fit the measured
photoluminescence data with the two Lorentizian curves.
Exciton Formation Analysis. The exciton density at the

position x, N(x), was mapped across the emissive layer using
the sensing layer method.41,42 Ultrathin (∼1 Å) red
phosphorescent (PtOEP) layers were deposited at locations
shown in Figure 3a in a series of otherwise identical OLEDs.
The emission spectrum from the PtOEP sensing layer from
each position (x) and the CBP organic host is

λ λ λ= +I x a x I a x I( , ) ( ) ( ) ( ) ( )total PtOEP PtOEP CBP CBP (4)

where Itotal(λ, x) is the total emission spectrum comprising the
spectra of PtOEP (IPtOEP(λ)) and the CBP host matrix
(ICBP(λ)), with the relative weights of aPtOEP(x) and aCBP(x),
respectively. Then, the outcoupled exciton density at position
x, N(x) ηout(x), becomes

∫
∫ ∫

η η

λ λ λ

λ λ λ λ λ λ
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+

N x x
J
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a x I

a x I a x I

( ) ( ) ( )

( ) ( )/ d

( ) ( )/ d ( ) ( )/ d

out
0

EQE

PtOEP PtOEP

PtOEP PtOEP CBP CBP

(5)

where J0 is the current density and ηout(x) and ηEQE(x) are the
outcoupling and external quantum efficiencies of the sensing
layer at position x. The ηout(x) is calculated based on Green’s
function analysis43 in Figure S4. The range of ∼3 nm42 Förster
energy transfer limits the spatial resolution of the measure-
ment.
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